TC-12: H-mode transport at low aspect ratio

Collisionality scan of confinement and transport in MAST H-mode

Martin Valovič

with contribution from: R Akers, M M F de Bock, G Cunningham, L Garzotti, R Martin, C Michael, D Muir, R Scannell, M Turnyanskiy, M Wisse, M Walsh and the MAST team

ITPA Meeting on Transport and Confinement 5-7 October 2009, Princeton

Total field exponent ($\alpha_{Ip}+\alpha_{BT}$) in engineering scaling in STs suggests stronger v* scaling

Extrapolation along v_* for spherical and conventional tokamaks

Extrapolation to the Volume Neutron Source CTF-ST is mainly along collisionality Extrapolation from JET 3T plasmas with constant n/n_{Grw} involves 7x reduction in collisionality.

M Valovic, ITPA Meeting on T&C, Princeton, 5 Oct 2009 3

v* scan: global energy confinement

$\tau_{E}B \propto v^{x_{v}} F(\rho_{*},\beta,q)$	$M, T_e/T$	\overline{i})
const	$n \propto B^0$	$T \propto B^2$

	22769	22777	22664
a[m]	0.580	0.580	0.582
$R_{geo}[m]$	0.816	0.808	0.816
$B_T[T]$	0.340	0.428	0.500
$I_p[kA]$	592	738	886
q_{eng}	2.3	2.3	2.3
$\overline{n}_{e}[10^{19}m^{-3}]$	3.2	3.7	3.3
$W_{th}[kJ]$	41	65	84
$W_{th}/\overline{n}_e imes B_T^{-2}$	1.1	0.93	1.0
P _{NBI,INJ} [MW]	3.0	3.3	3.3

Maximum B_T range in H-mode is 0.34-0.50T, giving factor of 4.6 v_{*}- scan Mismatch in ρ_* is 10%, equivalent to exponent error of 0.2 With ρ_* and β correction exponent is ~0.71

Matching local parameters in v_{*} scan

 T_{e} [keV] T_i [keV] ne 8 2.0 2.5 2.0 1.5 6 $[10^{19} \text{ m}^{33}]$ 1.5 1.0 1.0 0.5 0.5 0.0 00 $0.0 \ \ 0.2 \ \ 0.4 \ \ 0.6 \ \ 0.8 \ \ 1.0$ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 $M_{tor} = V_{\phi}/V_{thi}$ $\beta_e, \rho_{*e}, T_e/T_i, \nu_{*e}$ ratio 0.8 6 MSE constrained 0.6 4 3 0.4 2 2 0.2 0.00 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Ω n

High v_{*} shot is sawtoothing but separate study shows small effect of s/t

No ν_* - M_{tor} correlation

Correlation v_* - T_e/T_i

B_T=0.50T 0.34T

Local heat transport analysis

v_{*} scaling: comparison with other tokamaks and possible models

D Applegate PPCF 2007

Candidate models:

- Collisional damping of zonal flows (Lin 1999)
- Proximity of neoclassical transport
- Microtearing instabilities predict v*-dependence,
 - but MAST scan lies close to the maximum of linear growth rate.

Full nonlinear calculations are planned for more accurate comparisons.

v* scaling: neutron rate

TRANSP neutron rate adjusted to measured value by fast ion diffusion 2-4m²/s

Along the v_* -scan neutron rate depends strongly on B_T .

 B_{T} is the most important engineering variable in the extrapolation to Neutron Source.

Summary

Factor of four collisionality scan in H-mode in MAST.

Thermal energy confinement time shows stronger collisionality dependence, $B_T \tau_E \sim v_*^{-(0.7-0.9)}$, similar to NSTX (S Kaye 2007)

Single fluid effective heat diffusivity is consistent with τ_E scaling, but electron heat diffusivity has weaker v_* dependence.

Along the v_* scan, neutron rate displays strong dependence on toroidal magnetic field stressing the importance of raising B_T towards the volume neutron source CFT-ST.

